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Lecture 5: Knowledge possession and knowledge transmission 
 
 
Vācaspatimiśra (c. 900CE): “a knowledge source does not deviate from its object. A knowledge source’s non-
deviation amounts to the fact that there will never be disagreement anywhere, anytime, in any condition, between 
the nature of the object and what we are taught by the knowledge source.” (Nyāya-sūtra, c.200CE/2017, p.15). 
Williamson (2000, p. 33): Knowledge is “the most general factive mental state.”  
 
1. Types of transmission 
Testimony is not our only way of transmitting knowledge. Knowledge can be transmitted from one agent to another 
by manipulation of perceptual attention, without the need for the receiving agent to trust the sender. Demonstrative 
reasoning can also bypass trust, as illustrated by Augustine’s example of the eavesdropper learning that the soul is 
immortal by recognizing the soundness of the proof that the atheist is reciting, where the atheist is “unaware that 
he’s stating truths” (Augustine, 389 CE/1995, 142). 
 
In testimonial transmission, you need to trust the speaker to take their word at face value. If your trust is irrational, 
you will not gain knowledge even if the speaker knows (although you will gain the truth). Knowledge gain is possible 
if you have knowledgeable trust in the speaker. If you know that I have knowledge on the point in question, then 
your complete way of judging this problem gets you safely to the truth, and my knowledge will be transmitted to 
you. But how do we know who is knowledgeable on a point of interest? 
 
Sociologists of conversation observe that we treat our conversational partners as if we had a sense of the zones 
within which their words can be safely taken at face value, their “epistemic territory” in John Heritage’s terminology. 
“While it may be thought that the notion of epistemic territory introduces a contingency of daunting difficulty and 
complexity into the study of interaction, in fact relative access to particular epistemic domains is treated as a more or 
less settled matter in the large bulk of ordinary interaction” (Heritage, 2012, p.6). 
 
Today I will argue that epistemic territory is generally mapped by the same domain-general learning mechanisms 
responsible for other types of intuitive cognition, such as face recognition. I also aim to shed light on the safety 
condition on knowledge, according to which “you know only if your belief is safe, i.e. it must be that you would so 
believe only if your belief were true” (Sosa, 1999, 381). Another formulation of safety: “If in case a one knows p on 
a basis b, then in any case close to a in which one believes a proposition p* close to p on a basis close to b, p* is 
true” (Williamson, 2009, 325). Q: what does it mean to “so believe” or to have a basis close enough for knowledge? 
 
2. An overview of face recognition 
The average adult can recognize the faces of roughly 5000 people (Jenkins, Dowsett, & Burton, 2018). Human faces 
are broadly similar in their basic configuration, so telling them apart requires subtle sensitivity to small differences. 
To complicate matters further, photographs or percepts arising from a single individual exhibit large differences 
arising from changing facial expressions, hairstyles, aging, blemishes, makeup, facial hair, illumination, angle of view, 
distance, and partial occlusion. We need to explain “not only how we tell people apart, but also how we tell people 
together” (Jenkins, White, Van Montfort, & Burton, 2011, p.321). 
 

 
Q: Can you cluster 
these photos into 
groups by identity, so 
that in each group you 
have photos of the 
same person?  
 
(Image Source: Jenkins, 
R., White, D., Van 
Montfort, X., & Burton, 
A. M. (2011).  
Variability in photos of 
the same 
face. Cognition, 121(3), 
p.316) 
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Individualized variation. The capacity to recognize an individual face is a many-to-one mapping from a domain of 
possible percepts (approximated by photos) to a target identity. It is important for the capacity to cover possible 
percepts: face recognition is not simply a matter of memorizing a stock of actual photos or percepts and then 
retrieving the correlated identity when we encounter some exact member of that stock. In order to select the correct 
underlying identity when we encounter someone in the wild, or see a new photo of them, we need to be equipped to 
deal with novel combinations of expression, viewpoint, etc. What makes this hard: “the ways in which one person’s 
face varies are different from the ways in which someone else’s face will vary. To recognise Angela Merkel from any 
image of her, then, our brains need to have learned how to take into account this idiosyncratic, Merkel-specific 
variability” (Young & Burton, 2018, p.106). 
 
For any given face, experience with similar faces is helpful. People will do better with ethnicities they have 

experienced more (Chiroro & Valentine, 1995; Malpass & 
Kravitz, 1969), assuming they have needed to track individual 
identities, as opposed to mere group membership (Sporer, 
2001). Young children recognize caregiver-aged faces better, 
but after the age of five, we are more accurate at recognizing 
the faces of our own age cohort (Rhodes & Anastasi, 2012; 
Wiese, Komes, & Schweinberger, 2013).  
 
The qualities that are used to distinguish and reidentify faces 
can be taken to structure a multidimensional Euclidean “face 
space” with a zone for each face, defined by its value for each 
of the dimensions (Valentine, 1991). We can imagine this as a 
Voronoi diagram (see left), in which each face defines a 
recognition zone or cell anchored on a prototype, divided from 
other cells by bisecting the distance along each dimension 
between this prototype and its nearest neighbours (Lewis & 
Johnston, 1999). 
 

 
3. Face recognition in artificial intelligence 
Description-driven approaches. Bruce & Young: “a familiar face is represented by an interconnected set of 
descriptions -- some describing the configuration of the whole face, and some describing the details of particular 
features” (Bruce & Young, 1986, p.308). These approaches seemed to demand a very large set of dimensions. 
Tracking 100,000 sets of relationships among 27 facial landmarks achieves results that still fall well short of human 
performance (Chen, Cao, Wen, & Sun, 2013).  
 
Deep learning with large data. DeepFace was developed using 4.4 million face images from 4030 people who 
each had 800-1200 photos of themselves (Taigman, Yang, Ranzato, & Wolf, 2014). This nine-layer model has 120 
million parameters (connections between nodes in successive layers), whose values are adjusted in the course of 
learning, to send a stronger or weaker activation signal to the next layer, on the basis of an error signal at each round 
of training. Ideally, the model would select the correct identity for each input photo with perfect certainty. It learns 
by failing to do so: the error signal (or “loss”) of the model is the negative log of the output probability assigned to 
whatever was in fact the correct identity. After each step of its supervised learning, the model tunes its parameters in 
the direction of ideal certainty about the truth. DeepFace approaches human performance levels. 
 
Regularization. DeepFace’s capacity to generalize beyond its training data is supported by a special feature of its 
penultimate fully-connected layer. Known as “dropout,” this feature randomly switches off the output of about half 
of the neurons (on each training cycle, each neuron has an independent 0.5 probability of being silenced) 
(Krizhevsky, Sutskever, & Hinton, 2012). Dropout is one of many regularization methods used to ensure that the 
model tracks robust features rather than spurious correlations in the training data (Kukačka, Golkov, & Cremers, 
2017). For a more nuanced picture of regularization, see (Ma, Bassily, & Belkin, 2018; Zhang, Bengio, Hardt, Recht, 
& Vinyals, 2021). 
 
Google’s FaceNet (Schroff, Kalenichenko, & Philbin, 2015) was trained on dataset of 200 million images drawn 

from 8 million identities. This model is organized in 22 layers with 
140M parameters. The final output layer delivers a compact 128-
dimensional embedding, a vector representing the image in “face 
space”. The goal of the model is to refine these output vectors so 
that they cluster in identities. This model delivers superhuman 
performance in face verification (scoring 99.63% on LFW).  
 



 3 

Epistemic safety in FaceNet. Following training on photographs from a domain of suitably facially distinctive 
individuals, an image can be recognized (known to be of some particular individual), when its vector lies closer to 
the vectors of other images of that individual than to any vector of an image of anyone else, so that slight deviations 
from the existing image would still be correctly identified. To judge an image’s identity in this manner is to judge in a 
way that could not easily err.  
 
Voronoi tessellations satisfy the Convexity criterion that Peter Gärdenfors and Igor Douven have argued is a 
feature of natural concepts: when a region is convex, for any two points in that region, every point on the line 
between those points also lies in that region (Douven & Gärdenfors, 2020, 320). There is a payoff in learnability 
here: if you learn, of a few vectors, that they all map onto Tom Hanks, then you have automatically learned that 
everything between those vectors also maps onto him.  
 
4. The basic structure of human face recognition  
How could our face recognition be as data-driven as FaceNet’s? We have more than enough parameters, but 
we don’t learn facial identities by looking at 1,000 labeled photos of a person. However, live action affords rich 
exposure: we see a given face moving through multiple expressions, often from multiple viewpoints, with the fact 
that these varied presentations are of a single individual given to us by the context.  
 
What you see is what you get: “the development of face processing is guided by the same ubiquitous rules that 
guide the development of cortex in general” (Arcaro, Schade, & Livingstone, 2019, p.341). Primate face recognition 
relies not on innate face-specific mechanisms, but on the same statistical learning processes that govern object 
recognition across the board. 
 
5. Over-parameterization, overfitting, and direct fit 

The “direct fit to nature.” In the 
textbook view of model-building, an 
ideal-fit model “learns the underlying 
generative or global structure of the 
data by exposing a few latent factors 
or rules” (see Figure 1B) (Hasson, 
Nastase, & Goldstein, 2020, p.418). 
But what about domains not 
governed by a few latent factors? 
Here Hasson and colleagues argue 
that our best option will be a direct fit 
model in which generic local 
calculations interpolate between 
observations (Figure 1D). Given 
dense data sampling within some 
zone, these models can represent 
extremely complex phenomena 
within that zone with strong fidelity, 
even while failing to extrapolate well 
beyond that zone. “The direct-fit 
perspective emphasizes the tight link 
between the structure of the world 
and the structure of the brain” 
(Hasson et al., p.430). 

Image: (Hasson et al., 2020, p.419). 
 
If our face recognition works along the lines of a Voronoi tessellation of face space, it is a tessellation in which some 
anchor points effectively coincide (e.g. indistinguishable twins). In addition, new anchor points may need to be 
added to the map as we go along; however, thanks to the local character of direct fit models, the need for these new 
anchor points does not compromise the safety of our identification of individuals further away in face space. 
 
6. Recognizing knowledge 
In a context in which there is reward for distinguishing cases of knowledge from cases of ignorance, if you have 
adequate level of experience of cases of both types and there are learnable regularities here, you can learn to 
distinguish them. Different social actions will win reward depending on the epistemic state of your target: if you 
want to know which way the coin in my palm is facing, you know you can ask me; if you want me to know how 
many coins are in your pocket, you must show or tell me. If a given <agent, proposition> pairing swiftly registers as 
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closer to a prototype of knowledge than to any prototype of ignorance, the agent will be seen as knowing (and vice-
versa for ignorance). 
 
Our systematic tendency to attribute knowledge presupposes that there really is a type of state of mind that subjects 
can only have only to truths. This presupposition would collapse in a world with too much variation either in 
objective reality or in the cognitive capacities of the subjects who surround us; as it is, the objective and cognitive 
regularities in our world enable us to have, and subsequently to detect in each other, patterns of knowledge, or 
successful cognitive adaptation to reality.  
 
We can be mistaken about whether someone is successfully adapted on a given point, just as we can be mistaken in 
identifying someone who turns out to have a secret twin. But because we learn from prediction error, the fact that 
we sometimes get knowledge attributions wrong drives learning of the dimensions separating types of ignorance 
from ways of knowing, rather than dissuading us from continuing to apply the infallibilist rule that there is some 
type of state subjects can have only to truths.  
 
Just as we learn to recognize a face by seeing multiple instances of it, so also we learn to recognize knowledge this 
way, going up a level. In ordinary reinforcement learning, we get adapted to regularities in the world. One interesting 
set of the regularities in the world is a set of ways in which creatures like us get adapted to regularities in the world, 
the set of ways of knowing. 
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